
Task Oriented Programming and
Service Algorithms for Smart

Robotic Cells

1

Academic Supervisor : Prof. Marina Indri
Company Supervisor : Ing. Rosario Cassano

S. Trapani

Stefano Trapani

2

q Converting standard production lines into smart factories, without
changing the initial layout of the line

q Two approaches :
1. Automatic offline programming methodology
2. Advanced functionalities implemented in standard industrial

manipulators

Motivation and goals

S. Trapani

3

q Converting standard production lines into smart factories, without
changing the initial layout of the line

q Two approaches :
1. Automatic offline programming methodology
2. Advanced functionalities implemented in standard industrial

manipulators

Motivation and goals

Classic approach
• Sharp skilled programmers with a

very high knowledge of the process
• Possible problems are solved by

the experience of the programmer
(e.g., how to satisfy cycle time
constraints, avoid collisions, etc.)

• Time consuming and hence
suitable for cells used to perform
the same process for long time
(low reconfigurability)

Automatic Task-Oriented approach
• More intuitive automatic

programming approach
• Soft skilled programmers must

specify the features of the robotic
cell and a structured set of tasks
defining the process (CAD
softwares)

• Fast process allowing high level of
cell reconfigurability

S. Trapani

4

q Converting standard production lines into smart factories, without
changing the initial layout of the line

q Two approaches :
1. Automatic offline programming methodology
2. Advanced functionalities implemented in standard industrial

manipulator

Motivation and goals

• Increase the smartness of the robotic cell
• Increase the number of applications

S. Trapani

5

q Converting standard production lines into smart factories, without
changing the initial layout of the line

q Two approaches :
1. Automatic offline programming methodology
2. Advanced functionalities implemented in standard industrial

manipulator

Motivation and goals

PART 1
Development of a task-based robot
programming approach, that
automatizes the programming of a
generic robotic cell, providing as a
result the work-flow defining the
required process

PART 2
Development of a set of service
algorithms based on the
information already available in
standard industrial robots

S. Trapani

q Definition of a generic task using a minimal set of basic actions
q Analysis of a wide range of industrial applications provided by the main

robot constructors in order to find a common set of features

Requiring a path

6

Needing further elaborations to
obtain a work-path

§ Arc welding
§ Cosmetic sealing
§ Polishing and deburring
§ Laser welding/cutting
§ Plasma cutting and water jet
§ Spot welding
§ Machine tending
§ Handling
§ Processing machining
§ Press brake bending
§ Interpress
§ Foundry
§ Assembly
§ Packaging
§ Painting

1

2

3

Involving only the motion
of the work-piece

Task-Oriented Programming - Task analysis

S. Trapani

q After a proper pre-elaboration the applications belonging to the third
class may fall into one of the first two classes

q Two main types of tasks can be defined: Standard tasks and Special tasks

7

3

Pre-elaboration

Special tasks Standard tasks

1

2

Arc welding
Cosmetic sealing
Polishing and deburring
Laser welding/cutting
Plasma cutting and water jet
Spot welding
Machine tending
Handling
Processing machining
Press brake bending
Interpress
Foundry

Assembly
Packaging
Painting

Task-Oriented Programming - Task analysis

S. Trapani

q After a proper pre-elaboration the applications belonging to the third
class may fall into one of the first two classes

q Two main types of tasks can be defined: Standard tasks and Special tasks
q Only standard tasks are managed by the task model in which

§ the real machines performing a process along a predefined path
using a specific tool are denoted as workers

§ the real machines equipped with a proper gripper carrying the work-
piece from a starting point to a final point are denoted as positioners

8

Standard tasks

Processes carried out on a specific
path or devoted to carry the work-
piece

Task-Oriented Programming - Task analysis

S. Trapani

9

Task-Oriented Programming - Approach

Translation of the
output of the Task-
Oriented Programming
into a program specific
for the adopted robot
controller

CAD Design Task-Oriented
Programming

Deploy into
the robotic line

A three-step approach

Automatic definition
of the sequence of
tasks and related
path planning of the
required process

• Physical definition of the
robotic cell (robots,
objects, workpieces)

• Definition of the tasks
(type, paths, required
tools)

• Generation of the
description file (e.g., a
xml file) used as input of
the Task-Oriented
Programming module

S. Trapani

10

Matlab script
providing an xml
file containing the
information
necessary to run
the automatic
task-oriented
programming tool

Simulator of the Comau
control system provided
by Comau

Matlab script Task-Oriented
Programming ORL simulator

The actually adopted three-step approach

Automatic definition
of the sequence of
tasks and related
path planning of the
required process

Task-Oriented Programming - Approach

S. Trapani

11

Automatic definition of
the sequence of tasks
and related path
planning of the
required process

T
a

s
k
-O

ri
e

n
te

d
 P

ro
g

ra
m

m
in

g

Pre Processing

Process Model

Process Optimization

Path Planning

C
O

R
ETask-Oriented

Programming

Task-Oriented Programming - Approach

S. Trapani

12

Automatic definition of
the sequence of tasks
and related path
planning of the
required process

T
a

s
k
-O

ri
e

n
te

d
 P

ro
g

ra
m

m
in

g

Pre Processing

Process Model

Process Optimization

Path Planning

C
O

R
E

2) Merging1) Mapping

SCG
Generator

FLG
Generator

3) Searching Algorithm 4) Optimization

Local

Global

Task-Oriented
Programming

Task-Oriented Programming - Approach

S. Trapani

S. Trapani 13

Task-Oriented Programming - Core

The task model-based approach allows to take into account both physical
constraints and functional ones between machineries and tasks

§ Assumption: task as a sequence of four basic phases (or by a subset of them): i)
picking the workpiece, ii) positioning the work-piece within a proper sub-set of
the working-area, iii) working, iv) placing the work-piece

§ Functional constraints: the set of relations between the required tasks and the
available machineries (e.g., task1 can be performed by machine1), can be modeled
by a proper graph called Functional Link Graph (FLG)

§ Physical constraints: the adoption of some machineries can be limited because of
their location or their physical characteristics; such constraints can be modeled by
a proper graph called Spatial Constraints Graph (SCG)

2) Merging1) Mapping

SCG
Generator

FLG
Generator

3) Searching Algorithm 4) Optimization

Local

Global

S. Trapani 14

A set of logical entities and a three-level task descriptor (Tasks,
Sub-Tasks and Paths) have been developed to build the FLG and
the SCG within a mapping process

Entities Role

Buffers Real objects used to store the work-piece

Positioners Real objects able to grip the work-piece

Workers Real objects able to perform a specific process

Objects Real objects that need to be processed

Virtual Synchronization and physical connections

The PATH element corresponds to the minimum action which can be
executed by a machinery. A complex task can be obtained by a proper
sequence of PATHs

Task-Oriented Programming – Mapping (I)
1) Mapping

SCG
Generator

FLG
Generator

S. Trapani 15

The entities can be connected according to two criteria: 1) the type
of the task and 2) the level of possible interaction between entities

The two models are obtained by mapping the real objects of the robotic cell
into the corresponding logical entities, and then applying a set of rules that
allow to create the connections between the entities

Task-Oriented Programming – Mapping (II)

SCG rules

Two entities can be linked only if the spatial
constraints are satisfied

Worker can be linked only to Positioner

Buffer can be linked only to Positioner

A pair of entities can be linked only if the
spatial constraints are satisfied

Positioners can be linked with other Positioners
only if explicitly required

FLG rule

A Worker and a PATH element can be linked only if the functional constraints are satisfied

1) Mapping
SCG

Generator
FLG

Generator

q Different scenarios are taken into account
1. Several workers can perform the same task
2. Some tasks need to be synchronized
3. The work-piece is physically modified during

the process

16

Remarks on FLG

q The Functional Link Graph (FLG) defines the possible relations
between each PATH element and the available workers

S. Trapani

17

q Different scenarios are taken into account
1. Several workers can perform the same task
2. Some tasks need to be synchronized
3. The work-piece is physically modified during

the process

q The Functional Link Graph (FLG) defines the possible relations
between each PATH element and the available workers

Remarks on FLG

S. Trapani

q Different scenarios are taken into account
1. Several workers can perform the same task
2. Some tasks need to be synchronized
3. The work-piece is physically modified during

the process
§ Three possible cases: 1) joining, 2)

splitting, 3) none

18

action_type effect on the model

joining Decreasing of the number of object entities

splitting (rejection) Number of object entity unchanged

splitting (division) Increasing of the number of object entities

none Number of object entity unchanged

q The Functional Link Graph (FLG) defines the possible relations
between each PATH element and the available workers

Remarks on FLG

S. Trapani

S. Trapani 19

q The High Level Model is thus obtained joining the SCG and the
n FLGs (one for each object)

Task-Oriented Programming – Merging

FLG

SCG

2) Merging

20

Task-Oriented Programming – Searching Algorithm
3) Searching Algorithm

All the possible work-flows carrying out the process are represented
using a specific model called Work Flow Model (WFL)

WFM block Role

AND_Split Open a parallel execution

OR_Split Open a mutual exclusion execution

AND_Join Close a parallel execution

OR_Join Close a mutual exclusion execution

TASK Recursive basic blocks or a basic task

The WFM is a recursive model defined by five basic blocks. The TASK block can be
used to combine basic blocks to create a more complex one, thanks to its recursive
nature. It is also used to define the basic actions

S. Trapani

21

Task-Oriented Programming – Searching Algorithm
3) Searching Algorithm

All the possible work-flows carrying out the process are represented
using a specific model called Work Flow Model (WFL)

Basic Tasks Role

Task_Pick Picking action

Task_Place Placing action

Task_Exec Working carried out by a Worker

Task_FlyPass Passage of the work-piece

The WFM is a recursive model defined by five basic blocks. The TASK block can be
used to combine basic blocks to create a more complex one, thanks to its recursive
nature. It is also used to define the basic actions

S. Trapani

22

Task-Oriented Programming – Searching Algorithm
3) Searching Algorithm

All the possible work-flows carrying out the process are represented
using a specific model called Work Flow Model (WFL)

Complex block Role

TASK_parallel one AND Split block, one
AND Join block and n TASK
Blocks

TASK_mutex one OR Split block, one OR
Join block and n TASK
blocks

TASK_st_exec is defined by one TASK
block followed by n OR
Join blocks

The WFM is a recursive model defined by five basic blocks. The TASK block can be
used to combine basic blocks to create a more complex one, thanks to its recursive
nature. It is also used to define the basic actions

S. Trapani

23

Task-Oriented Programming – Searching Algorithm
3) Searching Algorithm

The WFM can be created automatically by applying
a specific searching algorithm to the HLM. The
algorithm is divided into two flows, the blue one
that at each iteration selects the next tasks to be
performed, and the red one that computes all the
corresponding work-flows. While scrolling the HLM
a set of translation rules are applied in order to
build the WFM

S. Trapani

24

Task-Oriented Programming – Searching Algorithm
3) Searching Algorithm

S. Trapani

25

Task-Oriented Programming – Searching Algorithm
3) Searching Algorithm

The algorithm is based on a DFS search algorithm,
applied on a not oriented connected graph (the SCG
corresponds to !(#, %)) for ' times, where ' is the
number of PATHs required by the process. The
complexity can be approximated as (') *) + where
* = |#| and m = |%|

S. Trapani

S. Trapani 26

§ Low Level Optimization: the path
planning process is carried out for
each task of the WFM; such process
can include optimality constraints

§ Two levels of optimization must be managed:
• at path planning level (low level)
• at work-flow level (high level)

4) Optimization

Local

Global

Task-Oriented Programming – Optimization

§ High Level Optimization: the work-flow at minimal cost can be selected using
the output of the Low Level Optimization process to weight the WFM nodes.
An AO* algorithm can be used.

q Local Optimization: the optimization process is not aware to be
possibly included in a wider production line

q Global Optimization: the optimization process takes into account the whole
production line in order to achieve a global optimal result. A high level manager
is required

Integration with OTE methodology

S. Trapani

Integration of the proposed methodology in a general optimization
framework based on the usage of Key Performance Indicators (KPI) called
OTE/OEE, in collaboration with the Università Politecnica delle Marche
(UNIVPM)

4) Optimization

Local

Global

Fundamental configurations for OTE
series, parallel,

assembly, expansion

Interpretation of the cells (work unit,
job)

OEE=Aeff x Peff x Qeff

Tree structure
having

self-similar nodes

we construct from
workflow

27

Integration with OTE methodology

S. Trapani

Integration of the proposed methodology in a general optimization
framework based on the usage of Key Performance Indicators (KPI) called
OTE/OEE, in collaboration with the Università Politecnica delle Marche
(UNIVPM)

4) Optimization

Local

Global

Fundamental configurations for OTE
series, parallel,

assembly, expansion

Interpretation of the cells (work unit,
job)

OEE=Aeff x Peff x Qeff

28

OEE: Aeff x Peff x Qeff → [0,1]

Aeff : Availability
breakdowns, setup,

adjustmenst, maintenance

Peff : Performance
reduced speed,

idling, stoppages

Qeff : Quality
defects, rework, and yield

Original Interpretation

Integration with OTE methodology

S. Trapani

Integration of the proposed methodology in a general optimization
framework based on the usage of Key Performance Indicators (KPI) called
OTE/OEE, in collaboration with the Università Politecnica delle Marche
(UNIVPM)

4) Optimization

Local

Global

Fundamental configurations for OTE
series, parallel,

assembly, expansion

Interpretation of the cells (work unit,
job)

OEE=Aeff x Peff x Qeff

29

Aeff : Availability
faults or stoppings ratio,

from probability
distributions (MTBF,

programmed maintenance,
etc.)

Peff : Performance
related to the cycle time
required to execute the

given task

Qeff : Quality
to take into account the

energy consumption

OEE: Aeff x Peff x Qeff → [0,1]

Adopted Interpretation

WFM

OTE systems’tree

SCGFLG

Automatic Conversion
Algorithm

4) Optimization

Local

Global

Integration with OTE methodology

S. Trapani 30

S. Trapani 31

q OTE Methodology

ORL
Simulator

Aeff, Peff, Qeff

Recursive OTE Methodology

Different motion
conditions

Mapping Table
Motion condition

OEE

Results on Task-Oriented programming

§ The improvements are communicated at each iteration
§ On each iteration the appropriate suggested OTE is implemented
§ Once by favouring solutions for Peff and Aeff

§ The other by favouring Qeff

§ The choice depends on the overall policy in the process
§ Both the policies lead to improvements of the process

S. Trapani

Results on Task-Oriented programming

32

S. Trapani 33

Results on Task-Oriented programming

q Software implementation of the Task-Oriented Programming approach
(without the optimization step)

q Building of the WFM for some simple but realistic robotic cells (e.g.,
Pick&Place and welding applications).

q Simulation tests using the Comau robot simulator ORL

Case Study:
Application - phase1: spot welding process in PATH1 and
PATH2; phase2: arc welding process in PATH3; Starting point:
Collection point#1; End point: Collection point#3
Robotic cell: i) four robots equipped with a tool compatible
with the required tasks, ii) two robots with a gripper suitable
to pick the adopted work-piece and iii) three collection
points used to place the work-piece when necessary

34

q Converting standard production lines into smart factories, without
changing the initial layout of the line

q Two approaches :
1. Automatic offline programming methodology
2. Advanced functionalities to be implemented in standard industrial

manipulator

Motivation and goals

PART 1
Development of a task-based robot
programming approach, that
automatizes the programming of a
generic robotic cell, providing as a
result the work-flow defining the
required process

PART 2
Development of a set of service
algorithms based on the
information already available in
standard industrial robots

S. Trapani

35

Improve robot dynamic model

q Improve the accuracy of the robot dynamic model
M q q̈ + C q, q̇ q̇ + τ6 q̇ + g q = τ

τ89: = ; − ;̂

q Friction modelling and identification is a well known problem in robotics,
especially at low velocity; its solution allows
§ Improvement of the control performances
§ Enhancement of the robustness of all the applications based on the

comparison between the actual motor currents and the estimated ones

q General framework for friction identification is proposed
§ Applicable to different manipulators
§ Handling the data acquisition and parameters identification phases

q The friction model is based on a previous static model with further
improvements to roughly approximate some dynamic features of friction

q Extension of the framework for dynamic friction model
§ Based on the LuGre friction model
§ Improvements of the model for the industrial context

S. Trapani

36

Friction Identification Framework – Data Acquisition

PDL2
Moni

User program
written using the
COMAU
programming
language

Standard C5G
controller for
COMAU
manipulators

Output file
containing all
the acquired
data

Dynamic model : M q q̈ + C q, q̇ q̇ + τ6 q̇ + g q = τ

Rules:
Only one joint per time must be moved
Movements must be performed in the wider possible position range in
order to increase the part of the motion executed at constant velocity
The number of measurements at low velocity must be a good trade-off
between acquisition time and model accuracy

1

2

3

S. Trapani

37

Friction Identification Framework – Data Acquisition

PDL2
Moni

User program
written using the
COMAU
programming
language

Standard C5G
controller for
COMAU
manipulators

Output file
containing all
the acquired
data

Dynamic model : M q q̈ + C q, q̇ q̇ + τ6 q̇ + g q = τ

Rules:
Only one joint per time must be moved
Movements must be performed in the wider possible position range in
order to increase the part of the motion executed at constant velocity
The number of measurements at low velocity must be a good trade-off
between acquisition time and model accuracy

1

2

3

S. Trapani

38

Friction Identification Framework – Data Acquisition

PDL2
Moni

User program
written using the
COMAU
programming
language

Standard C5G
controller for
COMAU
manipulators

Output file
containing all
the acquired
data

Dynamic model : M q q̈ + C q, q̇ q̇ + τ6 q̇ + g q = τ

Rules:
Only one joint per time must be moved
Movements must be performed in the wider possible position range in
order to increase the part of the motion executed at constant velocity
The number of measurements at low velocity must be a good trade-off
between acquisition time and model accuracy

1

2

3

2 1

A subsequent
cleaning phase allows
to remove the gravity
component

S. Trapani

39

Friction Identification Framework - Identification

Reading and data pre-processing

Parameters identification

Cleaning

Splitting

Statistics

to split?

BoundsFriction Data

Caller

RecursiveIdent ModelError

 Θ

Validity
Region

1/N∑i=1

N

τ f , j
(i)

vlim. θ

moni.log

θvlim.

Y

N

Cleaning the data in order to eliminate
gravity contribution and to select only data
acquired at constant velocity

Splitting the data in order to standardize
input format

Computation of statistical information which
will be used to define feasible bounds of the
friction torques

S. Trapani

40

Friction Identification Framework - Identification

Reading and data pre-processing

Parameters identification

Cleaning

Splitting

Statistics

to split?

BoundsFriction Data

Caller

RecursiveIdent ModelError

 Θ

Validity
Region

1/N∑i=1

N

τ f , j
(i)

vlim. θ

moni.log

θvlim.

Y

N

̅;?,@ =
1

B
C

DEF

G

;?,@
(D)

HIJ,K =
∑DEF
G ;

?,@

(D)
− ̅;?,D

M

B

N O@ = ̅;?,@ ± ') +QR HIJ,S, HIJ,T, … , HIJ,V

Feasibility of friction values by means of a pair of bounds for
each velocity O@

S. Trapani

41

Friction Identification Framework - Identification

Reading and data pre-processing

Parameters identification

Cleaning

Splitting

Statistics

to split?

BoundsFriction Data

Caller

RecursiveIdent ModelError

 Θ

Validity
Region

1/N∑i=1

N

τ f , j
(i)

vlim. θ

moni.log

θvlim.

Y

N

Definition of the set of velocities in which the
validity of the model is guaranteed

#W ∈ O: OZD[≤ O ≤ O[]^_, O > 0 ∪

O: O[]^c ≤ O ≤ −OZD[, O < 0 OZD[=
e

100
Of_

S. Trapani

42

Friction Identification Framework - Identification

Reading and data pre-processing

Parameters identification

Cleaning

Splitting

Statistics

to split?

BoundsFriction Data

Caller

RecursiveIdent ModelError

 Θ

Validity
Region

1/N∑i=1

N

τ f , j
(i)

vlim. θ

moni.log

θvlim.

Y

N

Identification of the friction parameters

;? O = gh
i

2
arctan O pq + ghr

i

2
arctan O s

+gt O + guvtO
M
i

2
arctan O pq

Assigning a known value to w the identification
problem turns into a Linear In Parameters (LIP)
problem, which can be solved using Least Squares
(LS) method

x = yyz c{
y z|

The optimization is based on the computation of
the LS algorithm for each value of w between w[D}
and w[]^ with step ~

S. Trapani

43

Friction Identification Framework – Modified Model

;? O = ;:
i

2
arctan O pq + ;:�

i

2
QÄÅÇQ* O w + ;q O + ;}ZqO

M
i

2
QÄÅÇQ* O pq

S. Trapani

44

Two different models are computed for acceleration and deceleration phases
A proper filtering action manages the values provided by the two models

;?] O

= ÉZD[Ñ

Ö

;:
i

2
arctan O pq

+ ;:�
i

2
arctan O w + ;q O

+ ;}ZqO
M
i

2
arctan O pq

;?Ü O

= ÉZD[Ñ

Ö

;:
i

2
arctan O pq

+ ;:�
i

2
arctan O 1000w + ;q O

+ ;}ZqO
M
i

2
arctan O pq

ÉZD[O = á

1, O ≥ OZD[
O

OZD[
, O < OZD[

A limiting function is defined using OZD[
The limitation is active only for velocities
outside #W
The typical torque peak at low velocity is cut
during decelerations, in order to roughly
reproduce the hysteretic behavior of friction.

Friction Identification Framework – Modified Model

S. Trapani

45

Friction Identification Framework - Results

Experimental tests were performed using a standard COMAU Smart NS12
Comparison are carried out using two performance indices: the Root Mean Square
Error (RMSE) and the Mean Value (MV)

Comparision between original model and new one

All joint are simultaneously moved at low velocity

Joints individually moved at increasing velocity

The best results are obtained for
the third joint in the first test ,
with a reduction of 39% for RMSE
and 28% for MV

Current modality vs Residue modality

S. Trapani

46

Payload Check - Approach

Robot must be far
from singularities

q The forces due to a wrong definition of the robot dynamic model parameters like
the payload are computed

â = äz ã
c{
gåçh

Inverse static equation

é åçh = é − èé

Residual torque

Check of the matrix
condition number

S. Trapani

â = É̂ Éê |ë B^ Bê Bí

47

Payload Check - Approach

Payload_error =
|ë

!

Robot must be far
from singularities

q The forces due to a wrong definition of the robot dynamic model parameters like
the payload are computed

â = äz ã
c{
gåçh

Inverse static equation

é åçh = é − èé

Residual torque

Check of the matrix
condition number

Gravity acceleration

S. Trapani

49

Payload Check - Approach

Robot must be far
from singularities

q The forces due to a wrong definition of the robot dynamic model parameters like
the payload are computed

â = äz ã
c{
gåçh

Inverse static equation

é åçh = é − èé

Residual torque

Check of the matrix
condition number

Extracting DC component of Éí to separate the
payload error from model errors

Ideal conditions Éí is constant
Real conditions Éí is varying with ã, ã̇, ã̈

ö(õ) =
ö(õ − 1)) B + ö(õ)

B + 1

â = É̂ Éê |ë B^ Bê Bí Payload_error =
|ë

!

S. Trapani

50

Payload Check - Results

S. Trapani

q Good results are obtained for a COMAU NJ 130

§ Real payload 130 kg declared payload 0 kg

§ Mean value 129.6 kg

§ Standard deviation 0.31 kg

§ Relative mean error 0.31%

51

q A rapid and robust collision detection is a fundamental issue for the
safety of a robotic cell in any industrial environment, not only in the next
future when a high presence of collaborative robots is expected, but also
in current, standard production lines

q Goals and benefits:
§ Preservation of the robot mechanical parts in case of impact
§ Monitoring of the correct execution of the programmed task

• Detection of failures whose effects are similar to those of a
collision

q Industrial requirements:
§ Avoidance of false collision alarms
§ Wide applicability and portability of the SW implementation
§ Avoiding specific customizations
§ Using only the sensors that usually equip an industrial manipulator

Collision Detection - Motivations

S. Trapani

52

q Approach based on the residual current
q Detection based on a time varying threshold

function
q The threshold is given by the sum of two terms:

§ An estimate of the absolute value of the model
error in absence of collisions èúçåå(ù)

§ The sensitivity of the virtual sensor ûüvv†°¢h(ù)

q Different approaches to compute the model
error (èúçåå(ù)) are adopted when:
§ The current is in the steady state
§ The current is not in the steady state

Collision Detection - Approach

S. Trapani

53

Collision Detection - Approach

Behaviour of the estimate of the model error for the first joint of a COMAU NJ4
170

S. Trapani

54

Collision Detection - FSM

S. Trapani

Moving
Synchronous currents

Steady
IDM,i almost constant

Reversing
Ii changes its trend

Reversing_DM
IDM,i changes its trend

Impulse
Unexpected impulse of Ii

Ii
IDM,i

Safe state

Unsafe state

55

q The best threshold is used by a proper
identification of the collision sensitivity
ûüvv°£çuù(ù)

Collision Detection - Adaptivity

q The following adaptation law is applied for the i-th joint after
the user request

S. Trapani

56

q The best threshold is used by a proper
identification of the collision sensitivity
ûüvv°£çuù(ù)

Collision Detection - Adaptivity

q The following adaptation law is applied for the i-th joint after
the user request

S. Trapani

57

Collision Detection - Results

S. Trapani

58

Collision Detection - Results

S. Trapani

59

q Manage both collision reaction and manual guidance
q Sensor-less approach
q Distinguish accidental collisions from intended human-robot contacts

Post-collision reaction and Manual Guidance

S. Trapani

60

q Manage both collision reaction and manual guidance
q Sensor-less approach
q Distinguish accidental collisions from intended human-robot contacts

Post-collision reaction and Manual Guidance

• Stop the robot as fast as possible
• Reduction of the impact force

• Robot compliant to the applied forces

S. Trapani

61

q Manage both collision reaction and manual guidance
q Sensor-less approach
q Distinguish accidental collisions from intended human-robot contacts

Post-collision reaction and Manual Guidance

Waiting Monitoring

Manual
Guidance

Collision
Reaction

mg_exit

mg_enter

cr_enter

cr_exit

after 1s

S. Trapani

62

Post-collision reaction and Manual Guidance

Waiting Monitoring

Manual
Guidance

Collision
Reaction

mg_exit

mg_enter

cr_enter

cr_exit

after 1s

2Hz Low-Pass filter

10Hz High-Pass filter

S. Trapani

63

Post-collision reaction and Manual Guidance

Waiting Monitoring

Manual
Guidance

Collision
Reaction

mg_exit

mg_enter

cr_enter

cr_exit

after 1s

S. Trapani

64

Post-collision reaction and Manual Guidance

Waiting Monitoring

Manual
Guidance

Collision
Reaction

mg_exit

mg_enter

cr_enter

cr_exit

after 1s

t1 t2

Δ•�8

•�8

Ç

First
phase

S. Trapani

65

Post-collision reaction and Manual Guidance

Waiting Monitoring

Manual
Guidance

Collision
Reaction

mg_exit

mg_enter

cr_enter

cr_exit

after 1s

S1:

S2:

S3:

Second
phase

S. Trapani

66

Post-collision reaction and Manual Guidance

S. Trapani

67

Conclusions

On robotic cell programming :
q Task model able to take into account both physical and functional constraints
q Automatic task oriented programming based on the task model
q Collaboration with UNIVPM to integrate the task programming approach with

the OTE methodology
q Verification of the methodology for realistic robotic cells

On service algorithms :
q Improvement of the robot dynamic model using a new framework for friction

identification
q Adaptive collision detection algorithm (implemented in COMAU controller)
q Payload check (implemented in the COMAU controller)
q Post collision reaction
q Manual guidance

S. Trapani

68

Publications

v Task-Oriented Programming
1. Task Modeling for Task-Oriented Robot Programming, Trapani, Stefano; Indri, Marina, 22nd IEEE

International Conference on Emerging Technologies And Factory Automation (ETFA 2017)

2. Integration of a production efficiency tool with a general robot task modeling approach, Indri, Marina;
Trapani, Stefano; Bonci, Andrea; Pirani, Massimiliano, IEEE 23rd International Conference on Emerging
Technologies and Factory Automation (ETFA 2018)

3. Programming robot work flows with a task modeling approach, Indri, Marina; Trapani, Stefano, 44th Annual
Conference of the IEEE Industrial Electronics Society (IECON 2018)

v General procedures and service algorithms of general validity
4. Development of a Virtual Collision Sensor for Industrial Robots, Indri, Marina; Trapani, Stefano; Lazzero,

Ivan, journal SENSORS, 17(5), 1-23, 2017

5. A general procedure for collision detection between an industrial robot and the environment , Indri,
Marina; Trapani, Stefano; Lazzero, Ivan, 20th IEEE International Conference on Emerging Technologies and
Factory , Automation (ETFA 2015)

6. Development of a general friction identification framework for industrial manipulators, Indri, Marina;
Trapani, Stefano; Lazzero, Ivan, IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics
Society

7. Using Virtual Sensors in Industrial Manipulators for Service Algorithms Like Payload Checking, Indri, Marina;
Trapani, Stefano, 26th International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2017,
Springer series on MECHANISMS AND MACHINE SCIENCE

8. Smart Sensors Applications for a New Paradigm of a Production Line, Indri, Marina; Lachello, Luca; Lazzero,
Ivan; Sibona, Fiorella; Trapani, Stefano. - In: SENSORS. - ISSN 1424-8220. - ELETTRONICO. - 19:3, 650(2019).

S. Trapani

S. Trapani 69

Thanks

