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q Converting standard production lines into smart factories, without 
changing the initial layout of the line

q Two approaches :
1. Automatic offline programming methodology 
2. Advanced functionalities implemented in standard industrial 

manipulators

Motivation and goals

S. Trapani
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q Converting standard production lines into smart factories, without 
changing the initial layout of the line

q Two approaches :
1. Automatic offline programming methodology 
2. Advanced functionalities implemented in standard industrial 

manipulators

Motivation and goals

Classic approach 
• Sharp skilled programmers with a

very high knowledge of the process
• Possible problems are solved by

the experience of the programmer
(e.g., how to satisfy cycle time
constraints, avoid collisions, etc.)

• Time consuming and hence
suitable for cells used to perform
the same process for long time
(low reconfigurability)

Automatic Task-Oriented approach
• More intuitive automatic 

programming approach
• Soft skilled programmers must 

specify the features of the robotic 
cell and a structured set of tasks 
defining the process (CAD 
softwares)

• Fast process allowing high level of 
cell reconfigurability

S. Trapani
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q Converting standard production lines into smart factories, without 
changing the initial layout of the line

q Two approaches :
1. Automatic offline programming methodology 
2. Advanced functionalities implemented in standard industrial 

manipulator

Motivation and goals

• Increase the smartness of the robotic cell
• Increase the number of applications

S. Trapani
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q Converting standard production lines into smart factories, without 
changing the initial layout of the line

q Two approaches :
1. Automatic offline programming methodology 
2. Advanced functionalities implemented in standard industrial 

manipulator

Motivation and goals

PART 1
Development of a task-based robot 
programming approach, that 
automatizes the programming of a 
generic robotic cell, providing as a 
result the work-flow defining the 
required process

PART 2
Development of a set of service 
algorithms based on the 
information already available in 
standard industrial robots

S. Trapani



q Definition of a generic task using a minimal set of basic actions
q Analysis of a wide range of industrial applications provided by the main 

robot constructors in order to find a common set of features

Requiring a path
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Needing further elaborations to 
obtain a work-path

§ Arc welding
§ Cosmetic sealing
§ Polishing and deburring
§ Laser welding/cutting
§ Plasma cutting and water jet
§ Spot welding
§ Machine tending
§ Handling 
§ Processing machining
§ Press brake bending
§ Interpress
§ Foundry
§ Assembly
§ Packaging
§ Painting

1

2

3

Involving only the motion 
of the work-piece

Task-Oriented Programming - Task analysis

S. Trapani



q After a proper pre-elaboration the applications belonging to the third 
class may fall into one of the first two classes  

q Two main types of tasks can be defined: Standard tasks and Special tasks  
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3

Pre-elaboration

Special tasks Standard tasks 

1

2

Arc welding
Cosmetic sealing
Polishing and deburring
Laser welding/cutting
Plasma cutting and water jet
Spot welding
Machine tending
Handling 
Processing machining
Press brake bending
Interpress
Foundry

Assembly
Packaging
Painting

Task-Oriented Programming - Task analysis

S. Trapani



q After a proper pre-elaboration the applications belonging to the third 
class may fall into one of the first two classes  

q Two main types of tasks can be defined: Standard tasks and Special tasks
q Only standard tasks are managed by the task model in which

§ the real machines performing a process along a predefined path 
using a specific tool are denoted as workers

§ the real machines equipped with a proper gripper carrying the work-
piece from a starting point to a final point are denoted as positioners
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Standard tasks 

Processes carried out on a specific 
path or devoted to carry the work-
piece

Task-Oriented Programming - Task analysis

S. Trapani
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Task-Oriented Programming - Approach

Translation of the
output of the Task-
Oriented Programming
into a program specific
for the adopted robot
controller

CAD Design Task-Oriented
Programming

Deploy into 
the robotic line

A three-step approach

Automatic definition
of the sequence of
tasks and related
path planning of the
required process

• Physical definition of the 
robotic cell (robots, 
objects, workpieces)

• Definition of the tasks 
(type, paths, required 
tools)

• Generation of the 
description file (e.g., a 
xml file) used as input of 
the Task-Oriented 
Programming module

S. Trapani
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Matlab script 
providing an xml 
file containing the 
information 
necessary to run 
the automatic 
task-oriented 
programming tool

Simulator of the Comau
control system provided
by Comau

Matlab script Task-Oriented
Programming ORL simulator

The actually adopted three-step approach

Automatic definition
of the sequence of
tasks and related
path planning of the
required process

Task-Oriented Programming - Approach

S. Trapani
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Automatic definition of
the sequence of tasks
and related path
planning of the
required process
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Task-Oriented Programming - Approach
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Automatic definition of
the sequence of tasks
and related path
planning of the
required process
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Task-Oriented Programming - Approach
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Task-Oriented Programming - Core

The task model-based approach allows to take into account both physical
constraints and functional ones between machineries and tasks

§ Assumption: task as a sequence of four basic phases (or by a subset of them): i)
picking the workpiece, ii) positioning the work-piece within a proper sub-set of
the working-area, iii) working, iv) placing the work-piece

§ Functional constraints: the set of relations between the required tasks and the
available machineries (e.g., task1 can be performed by machine1), can be modeled
by a proper graph called Functional Link Graph (FLG)

§ Physical constraints: the adoption of some machineries can be limited because of 
their location or their physical characteristics; such constraints can be modeled by 
a proper graph called Spatial Constraints Graph (SCG)

2) Merging1) Mapping

SCG
Generator

FLG
Generator

3) Searching Algorithm 4) Optimization

Local

Global
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A set of logical entities and a three-level task descriptor (Tasks,
Sub-Tasks and Paths) have been developed to build the FLG and
the SCG within a mapping process

Entities Role

Buffers Real objects used to store the work-piece

Positioners Real objects able to grip the work-piece

Workers Real objects able to perform a specific process

Objects Real objects that need to be processed

Virtual Synchronization and physical connections

The PATH element corresponds to the minimum action which can be
executed by a machinery. A complex task can be obtained by a proper
sequence of PATHs

Task-Oriented Programming – Mapping (I)
1) Mapping

SCG
Generator

FLG
Generator
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The entities can be connected according to two criteria: 1) the type 
of the task and 2) the level of possible interaction between entities

The two models are obtained by mapping the real objects of the robotic cell
into the corresponding logical entities, and then applying a set of rules that
allow to create the connections between the entities

Task-Oriented Programming – Mapping (II)

SCG rules

Two entities can be linked only if the spatial 
constraints are satisfied

Worker can be linked only to Positioner

Buffer can be linked only to Positioner

A pair of entities can be linked only if the 
spatial constraints are satisfied

Positioners can be linked with other Positioners 
only if explicitly required

FLG rule

A Worker and a PATH element can be linked only if the functional constraints are satisfied

1) Mapping
SCG

Generator
FLG

Generator



q Different scenarios are taken into account
1. Several workers can perform the same task
2. Some tasks need to be synchronized
3. The work-piece is physically modified during 

the process

16

Remarks on FLG

q The Functional Link Graph (FLG) defines the possible relations
between each PATH element and the available workers 

S. Trapani
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q Different scenarios are taken into account
1. Several workers can perform the same task
2. Some tasks need to be synchronized
3. The work-piece is physically modified during 

the process

q The Functional Link Graph (FLG) defines the possible relations
between each PATH element and the available workers 

Remarks on FLG

S. Trapani



q Different scenarios are taken into account
1. Several workers can perform the same task
2. Some tasks need to be synchronized
3. The work-piece is physically modified during 

the process
§ Three possible cases: 1) joining, 2) 

splitting, 3) none

18

action_type effect on the model

joining Decreasing of the number of object entities

splitting (rejection) Number of object entity unchanged

splitting (division) Increasing of the number of object entities

none Number of object entity unchanged

q The Functional Link Graph (FLG) defines the possible relations
between each PATH element and the available workers 

Remarks on FLG

S. Trapani
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q The High Level Model is thus obtained joining the SCG and the 
n FLGs (one for each object)

Task-Oriented Programming – Merging

FLG

SCG

2) Merging
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Task-Oriented Programming – Searching Algorithm
3) Searching Algorithm

All the possible work-flows carrying out the process are represented 
using a specific model called Work Flow Model (WFL) 

WFM block Role

AND_Split Open a parallel execution

OR_Split Open a mutual exclusion execution

AND_Join Close a parallel execution

OR_Join Close a mutual exclusion execution

TASK Recursive basic blocks or a basic task

The WFM is a recursive model defined by five basic blocks. The TASK block can be 
used to combine basic blocks to create a more complex one, thanks to its recursive 
nature. It is also used to define the basic actions

S. Trapani
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Task-Oriented Programming – Searching Algorithm
3) Searching Algorithm

All the possible work-flows carrying out the process are represented 
using a specific model called Work Flow Model (WFL)

Basic Tasks Role

Task_Pick Picking action

Task_Place Placing action

Task_Exec Working carried out by a Worker

Task_FlyPass Passage of the work-piece 

The WFM is a recursive model defined by five basic blocks. The TASK block can be 
used to combine basic blocks to create a more complex one, thanks to its recursive 
nature. It is also used to define the basic actions

S. Trapani



22

Task-Oriented Programming – Searching Algorithm
3) Searching Algorithm

All the possible work-flows carrying out the process are represented 
using a specific model called Work Flow Model (WFL) 

Complex block Role

TASK_parallel one AND Split block, one 
AND Join block and n TASK 
Blocks

TASK_mutex one OR Split block, one OR 
Join block and n TASK 
blocks

TASK_st_exec is defined by one TASK 
block followed by n OR 
Join blocks

The WFM is a recursive model defined by five basic blocks. The TASK block can be 
used to combine basic blocks to create a more complex one, thanks to its recursive 
nature. It is also used to define the basic actions

S. Trapani
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Task-Oriented Programming – Searching Algorithm
3) Searching Algorithm

The WFM can be created automatically by applying
a specific searching algorithm to the HLM. The
algorithm is divided into two flows, the blue one
that at each iteration selects the next tasks to be
performed, and the red one that computes all the
corresponding work-flows. While scrolling the HLM
a set of translation rules are applied in order to
build the WFM

S. Trapani
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Task-Oriented Programming – Searching Algorithm
3) Searching Algorithm

S. Trapani
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Task-Oriented Programming – Searching Algorithm
3) Searching Algorithm

The algorithm is based on a DFS search algorithm,
applied on a not oriented connected graph (the SCG
corresponds to !(#, %)) for ' times, where ' is the
number of PATHs required by the process. The
complexity can be approximated as ( ' ) * ) + where
* = |#| and m = |%|

S. Trapani
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§ Low Level Optimization: the path
planning process is carried out for
each task of the WFM; such process
can include optimality constraints

§ Two levels of optimization must be managed:
• at path planning level (low level)
• at work-flow level (high level)

4) Optimization 

Local

Global

Task-Oriented Programming – Optimization

§ High Level Optimization: the work-flow at minimal cost can be selected using
the output of the Low Level Optimization process to weight the WFM nodes.
An AO* algorithm can be used.

q Local Optimization: the optimization process is not aware to be
possibly included in a wider production line

q Global Optimization: the optimization process takes into account the whole
production line in order to achieve a global optimal result. A high level manager
is required



Integration with OTE methodology

S. Trapani

Integration of the proposed methodology in a general optimization 
framework based on the usage of Key Performance Indicators (KPI) called 
OTE/OEE, in collaboration with the Università Politecnica delle Marche 
(UNIVPM)

4) Optimization 

Local

Global

Fundamental configurations for OTE
series, parallel,

assembly, expansion

Interpretation of the cells (work unit, 
job)

OEE=Aeff x Peff x Qeff

Tree structure
having 

self-similar nodes 

we construct from 
workflow

27



Integration with OTE methodology

S. Trapani

Integration of the proposed methodology in a general optimization 
framework based on the usage of Key Performance Indicators (KPI) called 
OTE/OEE, in collaboration with the Università Politecnica delle Marche 
(UNIVPM)

4) Optimization 

Local

Global

Fundamental configurations for OTE
series, parallel,

assembly, expansion

Interpretation of the cells (work unit, 
job)

OEE=Aeff x Peff x Qeff
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OEE: Aeff x Peff x Qeff → [0,1]

Aeff : Availability
breakdowns, setup, 

adjustmenst, maintenance

Peff : Performance
reduced speed,

idling, stoppages

Qeff : Quality
defects, rework, and yield

Original Interpretation



Integration with OTE methodology

S. Trapani

Integration of the proposed methodology in a general optimization 
framework based on the usage of Key Performance Indicators (KPI) called 
OTE/OEE, in collaboration with the Università Politecnica delle Marche 
(UNIVPM)

4) Optimization 

Local

Global

Fundamental configurations for OTE
series, parallel,

assembly, expansion

Interpretation of the cells (work unit, 
job)

OEE=Aeff x Peff x Qeff
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Aeff : Availability
faults or stoppings ratio, 

from probability 
distributions (MTBF, 

programmed maintenance, 
etc.)

Peff : Performance
related to the cycle time 
required to execute the 

given task

Qeff : Quality
to take into account the 

energy consumption 

OEE: Aeff x Peff x Qeff → [0,1]

Adopted Interpretation



WFM

OTE systems’tree

SCGFLG

Automatic Conversion
Algorithm 

4) Optimization 

Local

Global

Integration with OTE methodology
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q OTE Methodology

ORL
Simulator

Aeff, Peff, Qeff

Recursive OTE Methodology 

Different motion 
conditions

Mapping Table 
Motion condition

OEE

Results on Task-Oriented programming



§ The improvements are communicated at each iteration
§ On each iteration the appropriate suggested OTE is implemented
§ Once by favouring solutions for Peff and Aeff

§ The other by favouring Qeff

§ The choice depends on the overall policy in the process
§ Both the policies lead to improvements of the process

S. Trapani

Results on Task-Oriented programming

32
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Results on Task-Oriented programming

q Software implementation of the Task-Oriented Programming approach
(without the optimization step)

q Building of the WFM for some simple but realistic robotic cells (e.g.,
Pick&Place and welding applications).

q Simulation tests using the Comau robot simulator ORL

Case Study:
Application - phase1: spot welding process in PATH1 and
PATH2; phase2: arc welding process in PATH3; Starting point:
Collection point#1; End point: Collection point#3
Robotic cell: i) four robots equipped with a tool compatible
with the required tasks, ii) two robots with a gripper suitable
to pick the adopted work-piece and iii) three collection
points used to place the work-piece when necessary
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q Converting standard production lines into smart factories, without 
changing the initial layout of the line

q Two approaches :
1. Automatic offline programming methodology 
2. Advanced functionalities to be implemented in standard industrial 

manipulator

Motivation and goals

PART 1
Development of a task-based robot 
programming approach, that 
automatizes the programming of a 
generic robotic cell, providing as a 
result the work-flow defining the 
required process

PART 2
Development of a set of service 
algorithms based on the 
information already available in 
standard industrial robots

S. Trapani
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Improve robot dynamic model

q Improve the accuracy of the robot dynamic model 
M q q̈ + C q, q̇ q̇ + τ6 q̇ + g q = τ

τ89: = ; − ;̂

q Friction modelling and identification is a well known problem in robotics, 
especially at low velocity; its solution allows 
§ Improvement of the control performances
§ Enhancement of the robustness of all the applications based on the 

comparison between the actual motor currents and the estimated ones

q General framework for friction identification is proposed
§ Applicable to different manipulators
§ Handling the data acquisition and parameters identification phases

q The friction model is based on a previous static model with further 
improvements to roughly approximate some dynamic features of friction

q Extension of the framework for dynamic friction model
§ Based on the LuGre friction model
§ Improvements of the model for the industrial context

S. Trapani
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Friction Identification Framework – Data Acquisition

PDL2
Moni

User program 
written using the 
COMAU 
programming 
language 

Standard C5G 
controller for 
COMAU 
manipulators

Output file 
containing all 
the acquired 
data

Dynamic model : M q q̈ + C q, q̇ q̇ + τ6 q̇ + g q = τ

Rules:
Only one joint per time must be moved
Movements must be performed in the wider possible position range in  
order to increase the part of the motion executed at constant velocity 
The number of measurements at low velocity must be a good trade-off 
between acquisition time and model accuracy

1

2

3

S. Trapani
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Friction Identification Framework – Data Acquisition

PDL2
Moni

User program 
written using the 
COMAU 
programming 
language 

Standard C5G 
controller for 
COMAU 
manipulators

Output file 
containing all 
the acquired 
data

Dynamic model : M q q̈ + C q, q̇ q̇ + τ6 q̇ + g q = τ

Rules:
Only one joint per time must be moved
Movements must be performed in the wider possible position range in  
order to increase the part of the motion executed at constant velocity 
The number of measurements at low velocity must be a good trade-off 
between acquisition time and model accuracy

1

2

3

2 1

A subsequent 
cleaning phase allows 
to remove the gravity 
component

S. Trapani



39

Friction Identification Framework - Identification

Reading and data pre-processing

Parameters identification

Cleaning

Splitting

Statistics

to split?

BoundsFriction Data

Caller

RecursiveIdent ModelError

     Θ

Validity 
Region

1/N∑i=1

N

τ f , j
(i)

   
vlim. θ

moni.log

θvlim.

Y

N

Cleaning the data in order to eliminate
gravity contribution and to select only data
acquired at constant velocity

Splitting the data in order to standardize
input format

Computation of statistical information which
will be used to define feasible bounds of the
friction torques

S. Trapani
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Friction Identification Framework - Identification

Reading and data pre-processing

Parameters identification

Cleaning

Splitting

Statistics

to split?

BoundsFriction Data

Caller

RecursiveIdent ModelError

     Θ

Validity 
Region

1/N∑i=1

N

τ f , j
(i)

   
vlim. θ

moni.log

θvlim.

Y

N

̅;?,@ =
1

B
C

DEF

G

;?,@
(D)

HIJ,K =
∑DEF
G ;

?,@

(D)
− ̅;?,D

M

B

N O@ = ̅;?,@ ± ' ) +QR HIJ,S, HIJ,T, … , HIJ,V

Feasibility of friction values by means of a pair of bounds for 
each velocity O@

S. Trapani
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Friction Identification Framework - Identification

Reading and data pre-processing

Parameters identification

Cleaning

Splitting

Statistics

to split?

BoundsFriction Data

Caller

RecursiveIdent ModelError

     Θ

Validity 
Region

1/N∑i=1

N

τ f , j
(i)

   
vlim. θ

moni.log

θvlim.

Y

N

Definition of the set of velocities in which the
validity of the model is guaranteed

#W ∈ O: OZD[ ≤ O ≤ O[]^_, O > 0 ∪

O: O[]^c ≤ O ≤ −OZD[, O < 0 OZD[ =
e

100
Of_

S. Trapani
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Friction Identification Framework - Identification

Reading and data pre-processing

Parameters identification

Cleaning

Splitting

Statistics

to split?

BoundsFriction Data

Caller

RecursiveIdent ModelError

     Θ

Validity 
Region

1/N∑i=1

N

τ f , j
(i)

   
vlim. θ

moni.log

θvlim.

Y

N

Identification of the friction parameters

;? O = gh
i

2
arctan O pq + ghr

i

2
arctan O s

+gt O + guvtO
M
i

2
arctan O pq

Assigning a known value to w the identification 
problem turns into a Linear In Parameters (LIP) 
problem, which can be solved using Least Squares
(LS) method

x = yyz c{
y z|

The optimization is based on the computation of 
the LS algorithm for each value of w between w[D}
and w[]^ with step ~

S. Trapani
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Friction Identification Framework – Modified Model

;? O = ;:
i

2
arctan O pq + ;:�

i

2
QÄÅÇQ* O w + ;q O + ;}ZqO

M
i

2
QÄÅÇQ* O pq

S. Trapani
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Two different models are computed for acceleration and deceleration phases
A proper filtering action manages the values provided by the two models

;?] O

= ÉZD[ Ñ

Ö

;:
i

2
arctan O pq

+ ;:�
i

2
arctan O w + ;q O

+ ;}ZqO
M
i

2
arctan O pq

;?Ü O

= ÉZD[ Ñ

Ö

;:
i

2
arctan O pq

+ ;:�
i

2
arctan O 1000w + ;q O

+ ;}ZqO
M
i

2
arctan O pq

ÉZD[ O = á

1, O ≥ OZD[
O

OZD[
, O < OZD[

A limiting function is defined using OZD[
The limitation is active only for velocities
outside #W
The typical torque peak at low velocity is cut
during decelerations, in order to roughly
reproduce the hysteretic behavior of friction.

Friction Identification Framework – Modified Model

S. Trapani
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Friction Identification Framework - Results

Experimental tests were performed using a standard COMAU Smart NS12  
Comparison are carried out using two performance indices: the Root Mean Square 
Error (RMSE) and  the Mean Value (MV)

Comparision between original model and new one

All joint are simultaneously moved at low velocity

Joints individually moved at increasing velocity

The best results are obtained for 
the third joint in the first test , 
with a reduction of 39% for RMSE 
and 28% for MV  

Current modality vs Residue modality

S. Trapani
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Payload Check - Approach

Robot must be far 
from singularities 

q The forces due to a wrong definition of the robot dynamic model parameters like 
the payload are computed

â = äz ã
c{
gåçh

Inverse static equation

é åçh = é − èé

Residual torque

Check of the matrix 
condition number

S. Trapani



â = É̂ Éê |ë B^ Bê Bí
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Payload Check - Approach

Payload_error =
|ë

!

Robot must be far 
from singularities 

q The forces due to a wrong definition of the robot dynamic model parameters like 
the payload are computed

â = äz ã
c{
gåçh

Inverse static equation

é åçh = é − èé

Residual torque

Check of the matrix 
condition number

Gravity acceleration

S. Trapani
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Payload Check - Approach

Robot must be far 
from singularities 

q The forces due to a wrong definition of the robot dynamic model parameters like 
the payload are computed

â = äz ã
c{
gåçh

Inverse static equation

é åçh = é − èé

Residual torque

Check of the matrix 
condition number

Extracting DC component of Éí to separate the
payload error from model errors

Ideal conditions         Éí is constant 
Real conditions          Éí is varying with ã, ã̇, ã̈

ö(õ) =
ö(õ − 1) ) B + ö(õ)

B + 1

â = É̂ Éê |ë B^ Bê Bí Payload_error =
|ë

!

S. Trapani
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Payload Check - Results

S. Trapani

q Good results are obtained for a COMAU NJ 130  

§ Real payload 130 kg declared payload 0 kg

§ Mean value 129.6 kg

§ Standard deviation 0.31 kg

§ Relative mean error 0.31%



51

q A rapid and robust collision detection is a fundamental issue for the 
safety of a robotic cell in any industrial environment, not only in the next 
future when a high presence of collaborative robots is expected, but also 
in current, standard production lines

q Goals and benefits:
§ Preservation of the robot mechanical parts in case of impact
§ Monitoring of the correct execution of the programmed task

• Detection of failures whose effects are similar to those of a 
collision

q Industrial requirements:
§ Avoidance of false collision alarms
§ Wide applicability and portability of the SW implementation
§ Avoiding specific customizations
§ Using only the sensors that usually equip an industrial manipulator

Collision Detection - Motivations

S. Trapani



52

q Approach based on the residual current
q Detection based  on a time varying threshold 

function
q The threshold is given by the sum of two terms:

§ An estimate of the absolute value of the model 
error in absence of collisions èúçåå(ù)

§ The sensitivity of the virtual sensor ûüvv†°¢h(ù)

q Different approaches to compute the model 
error ( èúçåå(ù)) are adopted when: 
§ The current is in the steady state
§ The current is not in the steady state

Collision Detection - Approach

S. Trapani
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Collision Detection - Approach

Behaviour of the estimate of the model error for the first joint of a COMAU  NJ4 
170

S. Trapani



54

Collision Detection - FSM

S. Trapani

Moving
Synchronous currents

Steady
IDM,i almost constant

Reversing
Ii changes its trend

Reversing_DM
IDM,i changes its trend

Impulse
Unexpected impulse of Ii

Ii
IDM,i

Safe state

Unsafe state
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q The best threshold is used by a proper 
identification of the collision sensitivity  
ûüvv°£çuù(ù)

Collision Detection - Adaptivity

q The following adaptation law is applied for the i-th joint after 
the user request

S. Trapani
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q The best threshold is used by a proper 
identification of the collision sensitivity  
ûüvv°£çuù(ù)

Collision Detection - Adaptivity

q The following adaptation law is applied for the i-th joint after 
the user request
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Collision Detection - Results
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Collision Detection - Results
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q Manage both collision reaction and manual guidance
q Sensor-less approach
q Distinguish accidental collisions from intended human-robot contacts

Post-collision reaction and Manual Guidance

S. Trapani
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q Manage both collision reaction and manual guidance
q Sensor-less approach
q Distinguish accidental collisions from intended human-robot contacts

Post-collision reaction and Manual Guidance

• Stop the robot as fast as possible
• Reduction of the impact force

• Robot compliant to the applied forces

S. Trapani
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q Manage both collision reaction and manual guidance
q Sensor-less approach
q Distinguish accidental collisions from intended human-robot contacts

Post-collision reaction and Manual Guidance

Waiting Monitoring 

Manual
Guidance 

Collision
Reaction 

mg_exit

mg_enter

cr_enter

cr_exit

after 1s
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Post-collision reaction and Manual Guidance

Waiting Monitoring 

Manual
Guidance 

Collision
Reaction 

mg_exit

mg_enter

cr_enter

cr_exit

after 1s

2Hz Low-Pass filter

10Hz High-Pass filter
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Post-collision reaction and Manual Guidance

Waiting Monitoring 

Manual
Guidance 

Collision
Reaction 

mg_exit

mg_enter

cr_enter

cr_exit

after 1s
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Post-collision reaction and Manual Guidance

Waiting Monitoring 

Manual
Guidance 

Collision
Reaction 

mg_exit

mg_enter

cr_enter

cr_exit

after 1s

t1 t2
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First 
phase
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Post-collision reaction and Manual Guidance

Waiting Monitoring 

Manual
Guidance 

Collision
Reaction 

mg_exit

mg_enter

cr_enter

cr_exit

after 1s

S1:

S2:

S3:

Second 
phase

S. Trapani



66

Post-collision reaction and Manual Guidance
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Conclusions

On robotic cell programming :
q Task model able to take into account both physical and functional constraints
q Automatic task oriented programming based on the task model
q Collaboration with UNIVPM to integrate the task programming approach with

the OTE methodology
q Verification of the methodology for realistic robotic cells

On service algorithms :
q Improvement of the robot dynamic model using a new framework for friction

identification
q Adaptive collision detection algorithm (implemented in COMAU controller)
q Payload check (implemented in the COMAU controller)
q Post collision reaction
q Manual guidance

S. Trapani
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